Royal Skousen, QAM

Reversible Operators

1. Reversibility and irreversibility
In designing a quantum computational system for analogical modeling, every
operator meets the following two requirements:

(1) simultaneity: each operator must be defined so that it can apply
simultaneously to each of the 2" supracontexts;

(2) reversibility: each operator must be reversible.

The first requirement allows us to take advantage of the simultaneity of quantum
computing. The second requirement basically means that no erasure of data is
permitted prior to observation of the system (that is, prior to observation of the
superpositioned supracontexts). Each data occurrence, after being read, must be
kept or, if altered, must remain recoverable. Any computational result must be
recoverable, and by keeping all the input data, we insure recoverability.

Let us consider what we mean by a reversible operator. The basic idea is that
after an operator has been applied, we are able to determine from the final (or
output) state what initial (or input) state it came from. This requirement of
recoverability basically means that there is a one-to-one connection between
inputs and outputs, that no mergers or splits occur, only a shifting (or renaming, so
to speak) of representations.

One clear example of a reversible operator is negation. A not gate, or N gate
(where the N stands for negation), is reversible because we simply switch or flip
the polarity of a state a (true to false and false to true). In the following listing,

a; represents the initial state of a, while a,represents the final state of a:
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N gate
a; Ay
0 1
1 0

So given a final state a,of O (false), we know that a; was 1 (true); similarly, a,= 1
implies that a, = 0. '

On the other hand, the and operator is not reversible. With an and gate,

 the final state c;is true (or 1) only if ; and b, were both true (or 1). If the final state

is false (or 0), then there are three possible sets of initial states (00, 01, or 10), and
we do not know which set of initial states produced the false output:

and gate
a, b, C;
0 0 0
0 1 0
1 0 0
1 1 1

2. Reversibility of and / nand

In quantum computing, however, we can construct a reversible gate
that can be used as an and gate. We do this by constructing what is called
a control-control-not gate (or CCN gate, for short). In this system, we switch the
polarity of an initial state c; only if two other initial states a; and b, are each true.
The initial states a; and b, act as control states and c; acts as a not state (thus,
control-control-not). We get the following input-output relationships for the CCN
gate:
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CCN gate
a b, c a by ¢
0O 0 O 0O 0 0
0 0 1 0 0 1
0O 1 O 0O 1 0
0o 1 1 0 1 1
1 0 O 1 0 O
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

For this reversible gate, there are eight possible sets of initial states and eight
possible sets of final states. For the first six cases, the set of final states is identical
to the set of input states (thus 000 -~ 000, 001 - 001, 010 -~ 010, 011 -~ 011,

100 - 100, 101 - 101). For the last two cases, we simply switch the polarity of
the ¢ state (thus 110~ 111 and 111 - 110). This results in a unique one-to-one
function between all the sets of states. No information is lost, and from every set
of output states we can determine the unique set of input states from which it was
derived. We also emphasize here that with a CCN gate the two control states a and
b make no change whatsoever. In a sense, these two states represent labels.

Now from this CCN gate we can define a reversible and operator by
considering only those cases where the initial state c; equals zero. Given
the entire CCN gate, we mark these four cases with a check mark:

a, b, c; a by ¢
v 0 0 0 0 0 O
0O 0 1 0 0 1
v 0 1 O 0 1 0
0 1 1 0o 1 1
v 1 0 0 1 0 O
1 0 1 1 0 1
v 1 1 0 1 1 1
1 1 1 1 1 O
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If we isolate these four cases where ¢, = 0, we can see that we have the equivalent
of an and gate:

and (a CCN gate with ¢, = 0)

a b, ¢ a by ¢
v 0 0 0 0 0 O
v 0 1 0 0 1 O
v 1 0 0 1 0 O
v 1 1 0 1 1 1

The basic difference between a nonreversible and gate and a reversible CCN gate
acting as an and gate is that in the reversible gate the input states a and b are
carried over identically as output states. In other words, the initial information
about the states a and b is kept intact in the reversible gate.

Reversibility essentially requires that we have to keep track of the
input. Richard Feynman, one of the first who proposed applying quantum
mechanics to computing, realized that reversibility meant that the input could be
recovered along with the output at the end of the computation:

But note that input data must typically be carried forward to
the output to allow for reversibility. Feynman showed that in
general the amount of extra information that must be carried
forward is just the input itself. \

Richard Hughes, “Quantum Computation”, in Anthony J. G. Hey
(editor), Feynman and Computation: Exploring the Limits of
Computers, page 196 (Perseus Books: Reading, Massachusetts,
1999).

This result is of great significance for analogical modeling and, in fact, for all
exemplar-based systems — namely, reversibility means that we maintain the
exemplars, either directly or in some recoverable form. If some form of quantum
computing is used for language prediction, then all the exemplars used in a
computation must be recoverable (at least up until observation). Quantum
computation of any language-based system will therefore be an exemplar-based
one, even if the system ends up acting as a neural net or as a set of rules.
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Returning now to our example of the reversible CCN gate, we may ask what
non-reversible gate do we get when we consider the other four cases — namely, the
four unchecked cases. It turns out that when ¢; = 1, we end up with the equivalent
of the nand gate:

nand (a CCN gate with ¢; = 1)

a b, ¢ a by ¢
0 0 1 0 0 1
0 1 1 0O 1 1
1 0 1 1 0 1
1 1 1 1 1 0

By re-arranging the order of the 0/1 assignments so that all the checked cases

occur together, we can directly see the simultaneous and / nand distribution for
the CCN gate:

a b, ¢ a by ¢
v 0 0 0 0O 0 O
v 1 0 0 1 0 O and (0001)
v 0 1 0 0O 1 O
v 1 1 0 1 1 1
0 0 1 0O 0 1 |
1 0 1 1 0 1 nand (1110)
0 1 1 0 1 1
1 1 1 1 1 0

In this CCN gate, the and and nand operators can be said to form a conjugate pair
of operators since 1110 (nand) is the complement of 0001 (and).

In general, the operation of an N gate on a qubit a can be represented as N(a)
or more simply as Na. Similarly, the operation of a CCN gate on qubits a, b, and ¢
] can be represented as CCN (a,b,c) or again more simply as CCNabc.
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3. Reversibility of non-implication / implication

Now we use the reversible negation operator with CCNabc in order to
produce other logical configurations involving either a single O or a single 1. For
instance, if we first negate the b qubit, then apply CCNabc, and finally re-negate
the b qubit, we get the conjugate pair non-implication / implication ; that is,
non-implication for initial ¢ = 0 and implication for initial ¢ = 1. In each case, the
desired answer is found in the final state of the ¢ qubit.

Nb - CCNabc - Nb
a, by ¢ a, b, ¢, a; by ¢ a, b, ¢
v 0 0 O 0 1 O 0O 1 O 0O 0 O
v 1 0 0 1 1 0 I 1 1 1 0 1
v 0 1 0 0 0 O 0O 0 O 0O 1 O
v 1 1 0 1 0 O 1 0 O 1 1 O
0 0 1 0O 1 1 0 1 1 0O 0 1
1 0 1 1 1 1 1 1 0 1 0 O
0 1 1 0 0 1 0 0 1 0O 1 1
1 1 1 1 0 1 1 0 1 1 1 1

non-implication (¢, = 0)

a b, ¢ a, b, ¢
v 0 0 0 0O 0 O
v 1 0 0 1 0 1
v 0 1 0 0 1 0
v 1 1 0 1 1 0
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implication (¢; = 1)

a b, ¢ a, by ¢,
0 0 1 0 0 1
1 0 1 1 0 O
0 1 1 0 1 1
1 1 1 1 1 1

Note the effect of the reversible operators (Nb,CCNabé,Nb) on the 8 possible
cases. Each application merely shifts the positioning of the 8 possible cases, but
never merges them or eliminates any of the possibilities.

Nb - CCNabc - Nb
a, b, ¢ a, b, ¢, a; by ¢y a, b, ¢
0O 0 O 0O 1 0 0O 1 O 0O 0 O
1 0 O 1 1 0 1 1 1 1 0 1
0O 1 O 0O 0 O 0 0.0 0 1 O
1 1 0 1 0 O 1 0 O 1 1 O
0 0 1 ~0 1 1 0 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 0 O
0O 1 1 0O 0 1 0 0 1 0 1 1
1 1 1 1- 0 1 1.0 1 1 1 1

It should also be noted that no new possibility can be created since the
8 possibilities already cover every 0/1 possibility for each of the 3 given qubits,
thus 2° = 8. (More generally, given n qubits there are 2" possibilities.)

For any of these basic reversible operators, we swap the value of only one
qubit at a time, thus we can immediately re-apply that operator and return to the
original state. Similarly, for any given sequence of such basic reversible operators,
we can re-apply the operators in their reverse order and return to the original state
as well. Thus in the case of the conjugate pair implication and non-implication,

having applied (Nb,CCNabc,Nb), we can apply (Nb,CCNabc,Nb) and end up with
what we started with:
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Nb - CCNabc -~ Nb
a, b, ¢ a; by ¢ a, b, ¢, a, b, ¢
0O 0 O 0O 1 O 0O 1 0 0O 0 O
1 0 1 1 1 1 1 1 O 1 0 O
0 1 0 0O 0 O 0 0 O 0O 1 0
1 1 0 1 0 O 1 0 0 1 1 0
0 0 1 0 1 1 0O 1 1 0 0 1
1 0 O 1 1 0 1 1 1 1 0 1
0 1 1 0 0 1 0O 0 1 0 1 1
1 1 1 1 0 1 1 0 1 1 1 1

Thus reversibility is maintained through sequences of operators.

In this example, the negating of qubit b allows us to shift, so to speak, the
distribution of the 0's and 1's. With no negation, we had and / nand (with
its distributions of 0001/1110). By negating the qubit b, we now end up with
non-implication [ implication (and its distributions of 0100/1011).

4. Reversibility of non-consequence / consequence

Similarly, by negating qubit a rather than qubit b, we can get the conjugate
pair consequence and non-consequence and its distribution 0010/1101:

Na - CCNabc - Na
a b, ¢ a, b, ¢ a; by ¢, a, b, ¢
v 0 0 O 1 0 O 1 0 O 0O 0 O
v 1 0 0 0 0 O 0 0 O 1 0 O
v 0 1 0 1 1.0 1 1 1 0 1 1
v 1 1 0 0 1 O 0O 1 O 1 1 0
0 0 1 1 0 1 1 0 1 0 0 1
1 0 1 0O 0 1 0 0 1 1 0 1
0 1 1 1 1 1 1 1 0 0 1 0
1 1 1 0 1 1 0O 1 1 1 1 1
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non-consequence (¢, = 0)

a, by ¢ a, b, ¢
v 0 0 0 0O 0 O
v 1 0 0 1 0 O
v 0 1 0 0 1 1
v 1 1 0 1 1 0

consequence (¢, = 1)

a b, ¢ a, by, ¢
0 0 1 0 0 1
I 0 1 1 0 1
0O 1 1 0O 1 O
1 1 1 1 1 1

5. Reversibility of nor / or

Finally, by negating both qubits a and b, we get the conjugate pair nor / or
(and its distributions 1000/0111). Since the order of the negation makes no
difference, we will show only the combined result of the negations:

Na,Nb - CCNabc - Nb,Na
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nor (¢, =0) -

a b, ¢ as bs ¢
v 0 0 0 0 0 1
v 1 0 0 1 0 O
v 0 1 0 0O 1 0
v 1 1 0 1 1 0
or (c;=1)

a b, ¢ as bs ¢4

0 0 1 0O 0 O

I 0 1 1 0 1 :

0 1 1 0 1 1

1 1 1 1 1 1

These results show that negating a qubit x is a kind of renaming, replacing x
with not-x, while the single CCN operator is responsible for flip-flopping a single
0 with a 1. The negation operator acts on a single qubit and thus leaves other
qubits unaffected. But the CCN operator conditionally negates a qubit (depending

on the states of two other qubits), thus setting up dependencies (or entanglements)
between the qubits. '

6. Reversibility of copy a / copy not-a

Applying the CCN twice can be used to further increase the dependencies (or
entanglements) between the qubits, but only when at least one of the qubits has
been negated. If no qubit is negated, then we just end up with the same states as in
the beginning, without any entanglement; that is, (CCNabc,CCNabc) is equivalent
to the identity operator since CCNabc is its own inverse. But let us suppose that
we first apply CCNabc, then negate the b qubit, apply CCNabc once more, and
then re-negate the b qubit. This sequence of operators (CCNabc,Nb,CCNabc,Nb)
will produce the equivalent of copy a or copy not-a, depending on whether the
¢ qubit is initially set to O to 1:

10
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CCNabc - Nb - CCNabc -~ Nb
a, b, ¢ a, b, c, a; by ¢ a, b, ¢ as bs cs
v 0 0 0 0 0 O 0 1 0 0 1 O 0 0 O
v 1 0 0 1 0 O 1 1 0 1 1 1 1 0 1
v 0 1 0 0 1 0 0 0 0 0 0 O 0 1 O
v 1.1 0 1 1 1 1 0 1 1 0 1 1 1 1
0 0 1 0 0 1 0 1 1 0 1 1 0 0 1
1 0 1 1 0 1 1 1 1 1 1 0 1 0 0
0 1 1 0 1 1 0 0 1 0 0 1 0 1 1
1 1 1 1.1 0 1 0 O 1 0 O 1 1 0

a, b, ¢ as bs cs
v 0 0 0 0 0 O
v 1 0 0 1 0 1
v 0 1 0 0O 1 0
v 1 1 0 1 1 1

—_ O = O
— = O O
=
—_ O = O
— = O O
O = O

For this conjugate pair, we get the distribution 0101/1010, identical to the
distribution for the a qubit when ¢, = 0 and its negation when ¢; = 1. Of course,
this negation is not the same as not a (that is, Na), which would just reverse the
states of the a qubit and not affect the ¢ qubit at all. Rather, this operation makes
the ¢ qubit equal to the reverse of the a qubit when ¢; = 1 (but identical to the a
qubit when ¢, = 0).

11
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The copying aspect also needs some explanation. A qubit can be copied in
analogical modeling because its state is either 0 and 1. More generally, in quantum
mechanics, a qubit has the general state of ¢|0> + |1>, where « and 3 are
complex numbers such that |«|* +|B[* = 1. Under such general conditions, the state
of the qubit cannot be copied identically unless either & = 1 or B = 1, which means
that the qubit can only take on the orthogonal states 0 and 1. For discussion and
proof of this result, referred to as the no-cloning theorem, see Michael A. Nielsen
and Isaac L. Chuang, Quantum Computation and Quantum Information, pages
24-25, 532 (Cambridge University Press: Cambridge, England, 2000).

7. Reversibility of copy b / copy not-b
Now suppose we wish to copy the b qubit rather than the a qubit. To do this,

we use Na rather than Nb in our series of operators — that is, we start with the
same initial operator CCNabc, but now we follow it by applying (Na,CCNabc,Na):

CCNabc -~ Na - CCNabc - Na
a, b, ¢ a, b, c, a; by ¢, a, b, ¢4 as bs cs
v 0 0 O 0 0 O 1 0 O 1 0 O 0 0 O
v 1 0 0 1 0 O 0 0 O 0 0 O 1 0 O
v 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1
v 1 1 0 1 1 1 0 1 1 0 1 1 I 1 1
0 0 1 0 0 1 1 0 1 1 0 1 0 0 1
1 0 1 1 0 1 0 0 1 0 0 1 1 0 1
0 1 1 0 1 1 1 1 1 1 1 0 0 1 O
1 1 1 1 1 0 0 1 O 0 1 0 1 1 0

a, b, ¢ as bs cs
v 0 0 0 0O 0 O
v 1 0 0 1 0 O
v 0 1 0 0O 1 1
v 1 1 0 1 1 1

12
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copy not-b (¢, = 1)

a b as lbs Cs
0 0 1 0 0 1
1 0 1 1 0 1
0 1 1 0 1 0
1 1 1 1 1 0

For this conjugate pair we get the distribution 0011/1100, the same one as the

b qubit. Replacing Nb with Na in order to copy qubit b rather than qubit a
reminds us that the use of Na and Nb is equivalent to renaming the qubits. If Nb is
necessary in copying a and its negation, then Na will be necessary in copying b
and its negation.

We should also note that in copying qubit a (or qubit b) the application of the
two Nb’s (or equivalently the two Na’s) must be properly sequenced if we wish to
obtain the desired results. Because of reversibility, we do not allow CCNabc to be
directly followed by another CCNabc since this ends up doing nothing. Similarly,
Nb cannot be directly followed by another Nb (nor can Na by another Na).
Keeping these restrictions in mind, we end up with the following possibilities:

copy a and not-a

CCNabc -
Nb - CCNabc -

Nb - CCNabc - Nb
Nb - CCNabc
copy b and not-b

CCNabc - Na - CCNabc - Na
Na - CCNabc - Na - CCNabc

8. Reversibility of exclusive or / equivalence
Thus far we have negated only one of the qubits. When we negate both,

qubit ¢ ends up telling us whether qubits a and b are different or the same; that is,
we get the conjugate pair exclusive or (abbreviated as XOR) and equivalence:

13
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Nb - CCNabc - NbNa - CCNabc - Na

a, byc, a,b,c, a3b;cy  as bscs  ag bg ¢ a; b, ¢,
JOOO 010 010 100 100 000
v 100 110 111 0 01 0 01 1 01
v 10 000 00O 110 111 011
v 110 1 00 1 00 010 010 1 10

001 011 011 1 01 1 01 0 01

1 01 1 11 110 000 000 1 00

011 0 01 0 01 111 1 10 010

1 11 1 01 1 01 011 011 1 11

exclusive or (¢; = 0)

a b ¢ a, b, ¢
v 0 0 0 0O 0 O
v 1 0 0 1 0 1
v 0 1 0 0 1 1
v 1 1 0 1 1 0
equivalence (c; = 1)

a b, c a;, b, ¢

0 0 1 0 0 1

1 0 1 1 0 O

0 1 1 0O 1 0

1 1 1 1 1 1

The resulting distribution of 0110/1001 means that in the end the ¢ qubit will tell
us whether or not qubits a and b have the same state or not. If the ¢ qubit is
initially set at 0, then in its final state it will give us XOR(a,b), thus telling us if
the states of qubits a and b differ. Or if ¢, = 1, then ¢, will tell us if a’s state is
logically equivalent to b’s.

As we might suspect, there are a number of different possible sequences
of applying the Na’s and Nb’s that will result in obtaining the conjugate pair
exclusive-or | equivalence. We have two major cases: (1) there is a single negative

14
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operator (either Na or Nb) between the two occurrences of CCNabc; or (2) both
Na and Nb occur between the two occurrences of CCNabc. If there were no .
negations, then the two CCNabc’s would cancel each other out. Similarly, if Na
occurs twice without any intervening CCNabc, then those two Na’s would also
cancel themselves out. The same holds for Nb. Finally, we should note that
whenever Na and Nb occur in a sequence, there is no need to specify the order.
Negations of single qubits act independently of each other. Thus in the following
list of the possibilities, a specification like “Na,Nb” means that we could have
either Na » Nb or Nb - Na:

(1) one negation between the two occurrences of CCNabc:

Nb -  CCNabc - Na - CCNabc - Na,Nb

Na -  CCNabc - Nb -  CCNabc - Na,Nb
NaNb - CCNabc - Na - CCNabc - Nb
Na,Nb CCNabc - Nb - CCNabc - Na

1

(2) two negations between the two occurrences of CCNabc:

CCNabc - NaNb - CCNabc - Na,Nb
Nb -~ CCNabc - NaNb - CCNabc - Na
Na - (CCNabc - NaNb - CCNabc - Nb
NaNb - CCNabc - NaNb - CCNabc

Some of these sequences can be simplified in terms of other sequences. For
instance, the last one is equivalent to nor / or immediately followed by CCNabc.
We recall that nor / or was defined as Na,Nb - CCNabc - Na,Nb. Having applied
that sequence, we only need apply CCNabc to effect exclusive-or / equivalence:

15
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nor [ or - CCNabc
a, by ¢ ag by ¢ a, b, ¢
0O 0 O 0 0 1 0 0 1
1 0 O 1 0 O 1 0 O
0 1 0 0O 1 0 0O 1 O
1.1 0 1 1 0 1 1 1
0 0 1 0 0 O 0 0 O
1 0 1 1 0 1 1 0 1
0 1 1 0 1 1 0 1 1
1 1 1 1 1 1 1 1 0

As shown by the arrows, the nor / or operator uses the two negations Na and Nb to
force CCNabc to switch the states for the ¢ qubit when both a and b are 0. Then
exclusive-or [ equivalence is derived by switching the states for the ¢ qubit for the -
case when both a and b are 1. This, of course, is precisely the difference between
inclusive-or and exclusive-or. The latter does not allow a and b to both equal 1.

9. Reversibility of contradiction / tautology

We now have one final case to list — namely, the logical result when no
CCNabc operation (or negative operation either) is applied. Under these
conditions, the final state of the ¢ qubit is the initial state, so when we set either
¢; =0orc, =1, we get the original distribution 0000/1111. This conjugate pair
can be logically referred to as contradiction / tautology (or FALSE / TRUE):

a, b, ¢
v 0 0 0
v 1 0 0
v 0 1 0
v 1 1 0

0O 0 1

1 0 1

0o 1 1

1 1 1

16
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contradiction (¢, = 0)

a, b, ¢
v 0 0 0
v 1 0 0
v 0 1 0
v 1 1 0

a, by o

0O 0 1

1 0 1

0O 1 1

1 1 1
10. A summary

Finally, we can summarize all 8 possible conjugate pairs of binary boolean
operations in terms of 8 reversible sequences of CCN and N gates:

CCNs Ns name distribution
- - contradiction / tautology (FALSE / TRUE) 0000/ 1111

one --- and / nand 0001/1110
Na non-consequence / consequence 0010/1101

Nb non-implication / implication 0100/ 1011

Na,Nb nor/ or 1000/ 0111

two Na copy b / copy not-b 0011/1100
Nb copy a / copy not-a 0101 /1010

Na,Nb  exclusive-or / equivalence 0110/ 1001

We will frequently have recourse to the using the following boolean symbols in
representing these conjugate pairs:

17
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name ' symbolic distribution
contradiction / tautology (FALSE / TRUE) F/T 0000/ 1111
and / nand ab/alb 0001/1110
non-consequence / consequence atb/a-b 0010/1101
non-implication / implication at+b/a-b 0100/1011
nor / or i ‘ alb/a+b 1000/0111
copy b/ copy not-b - b/b’ 001171100
copy a / copy not-a al/a' 0101/1010
exclusive-or / equivalence asb / a=b 011071001

For additional discussion of the relationship between the 16 boolean operators,
see A. K. Dewdney, The (New) Turing Omnibus: 66 Excursions in Computer
Science, 14-21 (W. H. Freeman: New York, New York, 1993); Robert R.
Korfhage, Discrete Computational Structures, 2nd edition, 292-295, 304-308
(Academic Press: Orlando, Florida, 1984); David Gries and Fred B. Schneider,

A Logical Approach to Discrete Math, 26-27 (Springer-Verlag: New York, 1993);
Lennart Rade and Bertil Westergren, Mathematics Handbook for Science and
Engineering, 4th edition, 32 (Springer-Verlag: Berlin, 1999).

11. Simplification using control-not

Besides the reversible operators of not (N) and control-control-not (CCN),
another helpful one is control-not (abbreviated as CN). In this instance, only one
qubit is controlled by another. For instance, using our array of possibilities as
before, we see that CN(a,c) — or CNac — depends only on qubit a to switch the 0/1
of qubit c. Any other qubit, such as qubit b, can be ignored:

CNac

Q
AR)
S

9]
<

_ O = O
—— OO
—_— O = O
O = O
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We can see from the resulting ¢, that it is equivalent to the exclusive or of a; and c;:

¢, = XOR (g;, ¢)

If we set ¢; = 0, we see that ¢, = a;, while setting ¢; = 1 we get ¢, = not a,.
In other words, we can use CNac to do the equivalent of copy a / copy not-a:

CNac
a G a &
v 0 0 0 O
v 1 0 1 1
0 1 0 1
1 1 1 0
copy a (¢, =0)
a G a,
v 0 0 0
v 1 0 1

a, ¢ a,
0 1 0
1 1 1

Cy

1
0

Similarly, CNbc will give us the equivalent of copy b / copy not-b.

One important difference between CN and CCN in doing copying is that with
CN there is no need to first negate some other qubit. To get copy a / copy not-a,
CCN first required us to negate an auxiliary b qubit. With CN the copying is

direct.

19
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Now consider what happens when we apply both CNac and CNbc. In this
situation, qubit ¢ will end up storing the result of exclusive-or / equivalence for
qubits a and b:

CNac ~ CNbc

a b ¢ a, b, c, a; by ¢

0 0 O 0 0 O 0 0 O

1 0 O 1 0 1 1 0 1 c¢3=aseb (¢;=0)
0O 1 O 0O 1 0 0 1 1

1 1 0 1 1 1 1 1 O

0 0 1 0 0 1 0 0 1

1 0 1 1 0 O 1 0 0 «c¢=asb(g=1)
0 1 1 0O 1 1 0O 1 O

1 1 1 1 1 0 1 1 1

All of these examples using CN produce the three conjugate pairs of boolean
operators that result from two applications of CCN: (1) copy a / copy not-a,
(2) copy b/ copy not-b, and (3) exclusive-or | equivalence. CN definitely makes
the task easier for producing these three cases. With CCN we must apply the
negative operator (Na to copy qubit b, Nb to copy qubit @, and both Na and Nb
to get exclusive-or | equivalence).

We further note that one application of CCN switches only a single 0/1 pair.
For instance, in producing the conjugate pair and / nand, the initial distribution for
qubit ¢ goes from 0000/1111 to 0001/1110. On the other hand, one application of
CN always switches two 0/1 pairs. Thus in producing copy b / copy not-b, CN
takes the 1nitial distribution for qubit ¢ from 0000/1111 directly to 0011/1100,
a switching of two 0/1 pairs. Since CN always involves such a double switching, it
can never be used to produce a case involving only a single switching. This means
that CN (even when combined with N) cannot do the four conjugate pairs that
involve only a single CCN: (1) and / nand, (2) non-consequence | consequence,
(3) non-implication | implication, and (4) nor / or. From this fact we deduce that
CCN and N form a complete base of reversible boolean operators, but CN and N
do not — that is, all reversible boolean operators on three qubits can be written as
a product of CCN and N.
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We can go further and show that CCN can be used in place of CN and N.

Suppose we wish to replace CNac with a CCN. We do this by using an auxiliary
qubit z set to 1 and do CCNzac:

CCNzac
L a4 G L G G
0 0 O 0O 0 O
0O 1 0 0O 1 O
0 0 1 0 0 1
0 1 1 o 1 1
5 10 0 1 0 0
T 1 1 O I 1 1 CNac = CCNzac whenz=1
1 0 1 1 0 1
1 1 1 1 1 0

In the case of N, we use two auxiliary qubits x and y and set both to 1. In the
following, we see how to negate qubit ¢ by means of CCNxyc:

CCNxyc
! X N G Xy Y2 G
l
j O 0 O 0O 0 O
| O 0 1 O 0 1
O 1 O O 1 O
0 1 1 0 1 1
1 0 O 1 0O O
1 0 1 1 0 1
1 1 0 1 1 1 Nc = CCNxycwhenx=1,y=1
= 1 1 1 1 1 0

The importance of this result is that the CCN reversible operator alone is a
universal operator — that is, CCN can be used by itself to form a complete base,

1
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which is not the case with CN and N. Thus any of the 16 standard boolean

operators can be derived by a sequence of CCNs. We only need replace each CN
and N operator with its equivalent CCN operator, providing of course we set the
appropriate 0/1 value for some auxiliary qubits.

For simplicity’s sake, we will use all three reversible operators to describe
the algorithm for analogical modeling. CCN and N will be used for the four cases
involving a single switching of a 0/1 pair. CN will be used for the cases involving
a double switching, copy / copy not and exclusive-or | equivalence. Our original
summary of all 8 possible conjugate pairs of binary boolean operators is now
revised to use the CN operator in those cases where it simplifies the application
sequence of reversible operators:

Ns CCNs

- CCNabc
Na CCNabc
Nb CCNabc

Na,Nb CCNabc

Ns

CNs

CNbc
CNac
CNac,CNbc

12. Circuit representations of reversible operators

symbolic
F/T

ab/alb

atb/a<b
atb/a-b
alb/a+b

b/b’
a/a’
aeb /a=b

distribution

0000/1111

0001/1110
0010/1101
0100/1011
1000/0111

0011/1100
0101 /1010
0110/1001

Very often in quantum computing a circuit is used to show the application of
the reversible operators. We construct these circuits in terms of N, CN, and CCN.
A solid dot ® stands for a controlling qubit, and the symbol ® stands for the
negation of a qubit. In order to get the equivalence of the boolean operators,
we must set the ¢ qubit to either O or 1. In the following, we list each of the
8 conjugate pairs, with the a and b qubits serving as the controlling qubits. The
¢ qubit gives the result. For the origin of these symbols, see pages 49-52 in Jozef
Gruska, Quantum Computing (McGraw-Hill: London, 1999).
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F/T alb/a+b

a a < &
b b ® ®
0/1 0/1 ©

ab/alb b/b’

a a

b b

0/1 ® 0/1 l
atb/a<b al/a’

a @ @ a

b . —]
0/1 ® 0/1 L

atb/a-b a®b /a=b
a a
b ® S b T
0/1 ® 0/1 \L l




